Bergen, Norway 18-21 September 2019	The Chan	ging Scenario of Immunosuppressive Therapy (1)
ESCCA Englan Solidy For Clinical Call Analysis	1960's-1980's	The T Cell-dependence of autoreactive and adaptive immune responses as a central concept in classical immunology
Immunotherapy and Immune Monitoring B Cell Monitoring During Anti-B Treatment in Autoimmune Diseases		Development of therapeutic strategies to control alloimmune and autoimmune reactions, in which T Cells and their soluble products were the major target
		Aims: Restoration of self-tolerance in autoimmune diseases and 'Immunological Resetting' in alloimmune reactions such as transplant rejection.
Bruno Brando & Arianna Gatti		The Price to be Paid: Over-Immunosuppression, organ toxicity and increased incidence of neoplasms
Hematology Laboratory and Transfusion Center Western Milan Area Hospital Consortium Legnano Hospital, Milano, Italy e-mail: <u>bruno.brando@asst-ovestmi.it</u> Sistema Sanitario FR egione () Combardia		

End 1990's to ~ 2005	The almost incidental evidence that Rituximab, used to treat lymphoproliferative disorders, can also improve autoimmune diseases.
10 2000	Development of the rationale of anti-B-Cell regimens in the treatment of autoimmune diseases and alloimmunity. Evidence that CD20 is a suitable target for MoAbs.
	Aims: Depleting the reservoir of 'pathogenic antibodies' Disrupting the ectopic germinal centers in target organs Favoring the repopulation by Ag-naïve B-Cells.
	The Price to be Paid: The need of repeated cycles of anti-CD20 therapy; Some diseases seem resistant to Rituximab anyway (i.e. SLE); Not all B-Cells are nasty (i.e. B-Regs exist); Just one target may not be enough.

Clinical Use of Therapeutic Monoclonals What Must Happen - What Can Happen THE ASSESSMENT OF THE TARGET ANTIGEN FEATURES IS A PREREQUISITE OF ANY TREATMENT WITH MoAbs • The target Cells must express the relevant antigen (some exceptions). • The target Cells must disappear during the treatment. • Antigen modulation must be distinguished from target cell disappearance and properly ruled out. • Blood cells can be indicators also for MoAbs acting on solid organ targets. • Consider the presence of antigen-negative malignant cell subclones. Cytometrist's Tasks: • Make a baseline assessment of the relevant Antigen on target Cells • Set the appropriate reagent protocol to assess MoAb efficacy • Set protocols to distinguish cell Disappearance from Ag Modulation

Extend the baseline phenotyping to disclose variant subclones

Rationale	for	B-Cell	Depletion	in	Autoimmune	Diseases:	The	Good	and	Bad
			-						_	

Although a direct ligand is unknown, CD20 is a stimulatory receptor in B Cells.

- Disruption of pathogenic (Auto/Allo)antibody production (mainly IgM).
- B lymphocytes act as Ag-presenting cells in T-Cell activation.
- B Cells generate ectopic germinal centers and produce inflammatory cytokines.
- 'Pathogenic Abs' often do not change (are they really pathogenic?).
- B Cells also include regulatory subsets (Bregs, CD5+ CD25+ IL-10+).
- Peripheral blood B Cell populations may not reflect B Cell homing in spleen and target affected organs (*B Cell location* → *Resistance to Rtx*?).
- Acting on a single molecule may be not enough: The biological redundancy may require the addition of more downstream actions
- Very wide individual variability.
- Cassia M. Expert Rev Clin Immunol 2017; 13: 951-962.
- Cambridge G. Journal of Autoimmunity 2014; 50: 67-76 Baker D. EBioMedicine 2017; 16: 41-50

Rituximab Reduces Memory T Cells at 3 and 6 Months in SLE Patients Anti-CD20 influences the immune system beyond hitting its cell target

	BASAL MD (IQR)	6M MD (IQR)	P-Value					
% CD3 ⁺ CD45R0 ⁺	45 (33.1–51.6)	30.1 (21.1–37.1)	<0.001					
% CD3+CD45R0-	45 (33-52)	61 (50-66)	< 0.001					
AbsCD3+CD45R0+	282.91 (146.48-845.88)	171.76 (118.84-424.91)	0.214					
AbsCD3+CD45R0-	249.29 (168.15-429.59)	446.4 (236.87-628.35)	0.035					
Memory T C	Memory T Cells: CD3+ CD45R0+; Naïve T Cells: CD3+ CD45 R0-							

- Percent and absolute Total T Cells do not change remarkably during Rituximab.
- A slight increase of TCD8+ seems correlated with the trigger of cytotoxicity.
- Some CD20 is expressed also in a fraction of T Cells.
- The abrupt disappearance of B Cells in secondary lymphoid organs induces a homeostatic rearrangement of T Cell homing.
- Absolute T-Reg levels increase at 6 months, whereas activated T Cell decrease.

Sentis A. Immunobiology 2017; 222: 620-630.

Anti-CD20 Therapies Remove Memo	ory B-Cells in Autoimmune Diseases
DISEASE	PATHOGENIC ANTIBODIES
Rheumatoid Arthritis	Citrullinated Cyclic Peptides, RF
Systemic Lupus Erythematosus	ANA, dsDNA, Ro
ANCA-Mediated Vasculitis, Polyangiitis	pANCA, cANCA
Membranous Nephropathy	PLA2R1
IgG4-Related Nephopathies	IgG4+ Plasmacells*
Dense Deposits - C3 Nephritis	Anti-Complement Factors H / I
Optic Neuromyelitis	Aquaporin-4
Pre-Transplant Immunisation	HLA Class I and Class II
MuSK-Mediated Myasthenia Gravis	Muscle-Specific Tyrosine Kinase Abs
Myasthenia Gravis	Acetylcholine Receptor Motor End Plate
Pemphigus	Keratinocyte Desmoglein 1 and 3

- Anti-CD20 therapies can stop the production of pathogenic antibodies when the auto-Ab producing reservoirs are within the Ag-primed CD27+ Memory B-Cells and short-lived Plasmablasts.
- The reappearance of Memory B-Cells can be thus taken as a sign of impending relapse and can herald the re-synthesis of pathogenic auto-Ab in some cases.
 - Hiepe F. Nat Rev Rheumatol 2011; 7: 170-178.
 - Cambridge G. J Autoimmun 2016; 70: 22-30.

Reference Levels of Functional B-Cell Subsets in Peripheral Blood (A Still Debated Issue)

		% of B Cells range	Abs Value/µLrange
B Cell Subsets	Phenotype	(mean)	(mean)
Peripheral B Cells	CD19+ CD20+ CD23+ CD24+	100	70 - 350 (185)
Immature	CD10+ CD19+ CD20+ CD27- CD38+	1.5 - 10.0 (5.4)	0.1 - 12 (8)
Transitional	CD10+ CD19+ CD20+ CD24++ CD38++	2 - 4 (3)	2 - 11.2 (6)
Naive	CD10- CD19+ CD20+ CD27- CD38-	49 - 81 (64)	45 - 165 (100)
Memory B	CD10- CD19+ CD20+ CD27+ CD38- CD43-	14 - 44 (31)	16 - 96 (52)
Plasmacells (total)	CD10- CD19+ CD20- CD27++ CD38++ CD43+	0.4 - 4.4 (2.1)*	0.1 - 4.2 (3)
CD138- Plasmacells	same, CD138- slg+ cylg+	57% ± 12 of PC	-
CD138+ Plasmacells	same, CD138+ slg- cylg+	43% ± 12 of PC	-

* < 0.02% of Total Leukocytes

Modified from: Perez-Andres M. Cytometry Part B 2010; 78B (Suppl. 1): S47-S60. Caraux A. Haematologica 2010; 95: 1016 - 1020.

	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11
B-cell subsets	Early B progenitors	CD19 B progenitors	Pre-BI	Pre-BII	Immature	Transitional	Early naive	Late naive	Switched memory	IgM IgD marginal zone	Plasm cells
CD19 CD38 CD24	hi low	+ hi hi	+ hi hi	+ hi hi	+ hi hi	+ hi hi	+ low pos	+ low pos	+ low hi	+ low hi	++++
CD34 CD45 CD10 IgM	+ low hi -	+ int hi -	int hi	int low	int Iow + +	- int +/- - + + +		- hi - +	- hi -	hi - hi	low
lgD CD27	_/low	_/low	_/low	_/low	+ -/low	- + + -/low	+	+ low	+	+++++	-+
Mediar	n% 0	0	0	0	0	5.8	23.9	44.6	11.5	6.3	C
:	±SD 0	0	0	0	0	5.3	8.8	11.2	10.6	9.0	2

Biological and Pharmacokinetic Comparison Between Major Anti-CD20 MoAbs						
ANTI-CD20 Monoclonal	Rituximab	Ocrelizumab	Ofatumumab	Obinutuzumab		
Elimination Half-Life (days)	RA: 18, Other 22-23	26	17.6	24		
ADCC	+	++	++	+++		
CDC	+++	+++	+++	+		
APOPTOSIS	+/-	+/-	+/-	++ direct		
PHAGOCYTOSIS	+	+	+	+++		
INTERNALIZATION	+++	++ var	++ var	+/-		

But ...

- Anti-CD20 pharmacokinetics in B-Cell malignancies and Autoimmunity is not comparable.
- IgG catabolism may vary in different diseases (i.e. faster clearance in SLE than in RA).
- The immune competence of the host is a major variable.

 - Golay J. Blood 2013; 122: 3482-3491.
 Reddy V. Drug Discovery Today 2016; 21: 1330-1338.
 Reddy V. Rheumatology 2017; 56: 1227-1237.
 Sacco KA. Immunotherapy 2018; 10: 713-728.

With the increasing use MEMORY B-Cells have	With the increasing usage of Rituximab in the treatment of autoimmune disorders MEMORY B-Cells have been identified as a reliable indicator of disease course:							
Reduced Memory B-Cells	⇒RemissionIncreased Memory B-Cells →Impending Relapse							
Rheumatoid Arthritis:	Calero I. Rheum Dis Clin N Am 2010; 36: 325-343. Dass S. Arthritis Rheum 2008; 58: 2993-2999. Becerra E. Clin Exp Immunol 2017; 190: 372-383. Roll P. Arthritis Rheum 2008; 58: 1566-1575.							
Juvenile RA:	Marasco E. Arthritis Rheumatol 2018; 70: 606-615.							
SLE:	Cassia M. Expert Rev Clin Immunol 2017; 13: 951-962. Reddy V. Arthritis Research & Therapy 2013, 15(Supp 1): S2 1-16. Reddy V. Rheumatology 2017; 56: 1227-1237. Vital EM. Arthritis Rheum 2011; 63: 3038-3047.							
Multiple Sclerosis:	Baker D. EBioMedicine 2017; 16: 41-50. Greenfield AL. Ann Neurol 2018; 83: 13-26.							
Systemic Sclerosis:	Gernert M. Arthritis Research & Therapy 2019; 21: 106.							

With the increasing usage of Rituximab in the treatment of autoimmune disorders MEMORY B-Cells have been identified as a reliable indicator of disease course: Reduced Memory B-Cells →Remission. Increased Memory B-Cells →Impending Relapse Neuromyelitis Optica Sp: Kim SH. JAMA Neurol 2015; 72(9): 989-995. Lebrun C. Neurol Ther 2018; 7: 373-383. Sjögren's Syndrome: Mariette X. N Engl J Med 2018; 378: 931-939. Glomerulonephritis: Leibler C. J Clin Med 2018; 7: 430; doi:10.3390/jcm7110430 Colucci M. J Am Soc Nephrol 2016; 27: 1811-1822. Iijima K. Clin Exp Nephrol 2017; 21: 193-202. Allogeneic Transplantation: Beausang JF. J Transl Med 2017; 15: 9; doi: 10.1186/s12967-017-1118-7 Ikemiyagi M. Ther Apher Dial 2017; 21(2): 139-149.

Identification of a B cell signature associated with renal transplant tolerance in humans

Kenneth A. Newell,¹ Adam Asare,^{2,3} Allan D. Kirk,¹ Trang D. Gisler,^{2,3} Kasia Bourcier,^{2,3}

- A set of 3 B cell differentiation genes distinguishes tolerant from non-tolerant subjects.
- Spontaneous operational tolerance to kidney allograft is associated with an increased number of circulating naïve and transitional B cells, suggesting a critical role for these B cells subsets in the regulation of alloimmune response.
- Naïve B cells are poor Ag-presenting cells and induce tolerance by orienting T cells into Tregs.

Newell KA. J Clin Invest 2010; 120: 1836-1847.

Rheumatoid Arthritis -	Rheumatoid Arthritis - B-Cell Subsets in 29 Patients Treated with Rituximab							
	n. 15	n. 13	n. 16					
Mean ± SD	N Ctrl	Non Responder	Responder	р				
CD19+CD20+%	12 (± 6)	1.4 (± 2.0)	5.1 (± 9)	ns				
Absolute B cells /µL	216 (± 147)	36 (± 53)	103 (± 198)	ns				
Memory B cells %	36 (± 13)	39.5 (± 30)	13.8 (± 15)	0.003				
Absolute memory B cells /µL	58 (± 70)	4 (± 5.6)	9.1 (± 19.2)	ns				
B cell Naive %	64 (± 13)	62 (± 30.6)	86.2 (± 15)	0.003				
Absolute naive B cells /µL	144 (± 41)	31 (± 49)	95.1 (± 181)	ns				
Plasma cells%	0.02 (± 0.02)	0.1 (± 0.3)	0.02 (± 0.01)	ns				
Memory B cells CD38 neg %	53.5 (± 10)	51 (± 16.3)	42.5 (± 19)	0.079				
		Mean DAS28: 4.8	Mean DAS28: 2.6	59				

- Higher percent levels of Memory B-Cells are reproducibly found in non-responder RA patients treated with Rituximab.
- Measurements were made after 3-8 months from the last RTX dose.

Gatti A. Presented at ESCCA 2019 - Bergen

Fhe Degree of B-Cell Depletion in Autoimmune Diseases: Is it	it Im	portant?
--	-------	----------

- Incomplete B-Cell depletion following Anti-CD20 MoAbs is associated with poor clinical response in both SLE and RA.
- Disease-specific mechanisms of Anti-CD20 MoAb accelerated clearance have been demonstrated in SLE.
- Enhanced and more prolonged B-Cell depletion can be achieved using additional doses of Anti-CD20 MoAbs, with a better clinical response.
- Therefore, achieving a complete and durable B-Cell depletion will improve clinical response in both SLE and RA.
- The problem is: HOW ACCURATELY CAN ONE DEFINE 'PROFOUND' B-CELL DEPLETION ?

Reddy V. Rheumatology 2017; 56: 1227-1237.

Conflicting Biomarkers and Endpoints for Anti-CD20 Treatments in Autoimmunity						
DISEASE	TARGET VALUES	REFERENCES				
Rheumatoid Arthritis SLE	<0.01 B Cells/µL (MRD) After the 1st dose. Plasmacells <2.85%.	Dass S, 2008 Calero I, 2010 Stradner MH, 2016 Md Yusof MY, 2017				
Membranous Nephropathy	'Disappearance' of CD27++ Plasmablasts	Pozdzik A, 2016				
IgG4-Related Diseases	'Disappearance' of IgG4+ Plasmablasts	Perugino CA, 2017				
Optic Neuromyelitis	CD27+ memory B Cells <0.05% of mononuclears	Collongues N, 2016 Cohen M, 2017				

The ISCCA Protocol for High-Resolution Monitoring of B-Cell Subsets in Peripheral Blood in Patients Treated with Anti-CD20 Therapeutic Monoclonals								
V450 V500c	FITC	PE	PerCP-cy5.5	PE cy7	APC	APC-H7		
CD20 CD45	CD4 +anti-IgM	CD38	CD3	<i>C</i> D19	CD27	CD8 +anti-IgG		
 + Full Blood Count f Hi-Res Cytometric A High Individual Var Naive B Cells = Resp Mature/Memory B C TEST at Baseline (Pre-Dose) (1 to 	for Absolute Analysis (>1,C mability Cells = Resist Ati-CD20 4 Boluses)	Lymphod 100,000 ance after Co a ne or a s	ryte Levels Cells) TEST 3 Months nsider w cycle switch to	if CD19+ < 0.1/µL if CD1 >0.3-0.5 (Subset Becom Informa if CD >1/µL Memory	9+ 5/µL ting es tive) 19+ and B>65%	re-TEST after 2 more Months and re-TEST after 1 more Month		

	Sistema Socio S	anitario								
	Regic Lomb	one ardia								
ASST Ovest Milanese U.O.C. Centro ImmunoTrasfusionale (Direttore Dott. B. Brando)										
		Sig.								
Sesso M Data Nascita:		Id.:19008045	Cod.Fiscale:							
		Provenienza:	71111 MAG - 71	111 - Reumatologia						
Data di Stampa: 26/02/2019 Ore: 10:05	Pag. 1 / 7	Richiesta: 361	032 del: 21/02/201	9 Routine						
Esame	Esito	<i>U.M.</i>	Valori Rifer	imento						
Centro Immuno Trasfusionale SgLINFOCITI CD3 (T)										
CD3 (T) %		64	%	60 - 86						
CD3 (T) #		0.83	10^3/µL	0.70 - 2.40						
SgLINFOCITI CD 19 (B)										
CD19 (B) %		0.9 <	%	5.00 - 22.00						
CD19 (B) #		0.01 <	10^3/µL	0.1000 - 0.5000						
Comparto Plasmacellulare										
Plasmacellule%		0.01	%	0.000 - 0.020						
Plasmacellule microL		0.97	$/\mu L$	0.000 - 3.000						
Comparto B ly CD19+CD20+										
B precursori		0.01	%	<0.01						
LY B memory%		2 <	%	10.0 - 35.0						
LY B memory microL		0.23 <	$/\mu L$	10.00 - 175.00						

Lessons Learned From B-Cell Subset Monitoring in RA and Autoimmune Disorders

- The degree of B-Cell depletion is the factor that is best correlated to the clinical response in Anti-CD20 treated patients.
- 'Adequate B-Cell depletion' must be defined with High-Resolution Flow Cytometry (i.e. < 5 B Cells /µL may be still TOO MUCH).
- The longer the duration of the B-Cell depletion, the better the clinical response.
- Relapse can occur despite low circulating memory B cells, suggesting that long-lived memory B-Cells (and possibly CD20- plasma cells) can act as the possible repository of disease memory, with relapse after B-Cell return.
- B-Cell repopulation recapitulates the physiological ontogeny, with an increased release of transitional and naïve B cells.
- No differences in B-Cell repopulation in therapy-naive patients and after multiple cycles.
- Serum level of soluble BAFF increase after Rituximab treatment, but the role of BAFF/BAFF-R, TACI and BCMA analysis in this setting is still unclear.

Reconstitution of B-Cells After Rituximab Depletion Mimics the Ontogeny of B-Cell Lineag

- RA Patients at the first Rituximab course (naïve patients) vs Patients at successive Rituximab cycles.
- Studied at Baseline, 3rd, 6th and 8th month of each cycle.
- Naïve patients have higher Total and Memory B-Cell % at baseline.
- In naïve patients the Transitional B-Cell% at baseline correlates with disease activity.
- However, recovery of B-Cell subsets after Rituximab is similar.
- Multiple Rituximab cycles do not induce cumulative effects on B-Cell subpopulations and recovery rates.

Lòpez J. Clin Exp Rheumatol 2018; Dec 19. [e-published ahead of print]

Immune Deficiency Following Therapies with Anti-CD20 MoAbs

- In some clinical protocols (both for Lymphoproliferative disorders and Autoimmune diseases) patients are treated with very prolonged cycles of Anti-CD20 MoAbs → Concern for Over-Immunos uppression.
- Disease-specific and Treatment-specific factors cooperate in generating post-MoAb hypogammaglobulinemia.
- Post-MoAb B-Cell reconstitution by naive cells causes a delay in the recovery of endogenous Ig production.
- Low Pre-therapy Ig, Lymphocyte and B-Cell levels are strong risk factors for the development of Post-MoAb immune deficiency.
- Recurrent infections associated with low levels of Ig and reduced B-Cell effector subsets should be taken as indicators to start i.v. Ig replacement therapy.

Sacco KA. Immunotherapy 2018; 10: 713-728.

Immune Deficiency Following Therapies with Anti-CD20 MoAbs (2)

- 243 Patients treated with average 6 g Rituximab for systemic vasculitis and other multisystem autoimmune diseases were followed for 42 months.
- Moderate to severe hypogammaglobulinemia (IgG < 500 mg dL) occurred in 63 cases (26%).
- In a half of them IgG concentration improved spontaneously at treatment discontinuation.
- IgG replacement therapy was initiated in 12 (4.2%), who had reduced Ig levels before treatment.

Roberts DM. Journal of Autoimmunity 2015; 57: 60-65.

[B cell lymphoproliferative disease and other hematological disease	Drug-related Corticosteroids Bortezomib (proteasome inhibitor)	Therapies targeting B cells Anti-CD20 Rituximab
Common Causes of Secondary Antibody	Chronic lymphocytic leukemia Lymphoma*	Anti-FcRn therapies Rozanolixizumab Mycophenolate Alkylating agents	- Veltuzumab - Ocrelizumab - Ofatumumab
Deficiencies	Myeloma — Multiple myeloma — Smouldering myeloma	Cyclophosphamide Chlorambucil Melphalan Sulphasalazine	Obinutuzumab Ublituximab Anti-CD22 Epratuzumab Anti-CD40
Secondary antibody deficiencies are 30 times more common than primary deficiencies	Monoclonal gammopathy of undetermined significance (MGUS)	Gold D-penicillamine Chlorpromazine Methotrexate Clozapine	Blinatumumab CD19-targeted chimeric antigen receptor T cells (CAR-T)
	Other hematological disease Leukemia Acute myeloid leukemia Chargia myeloid leukemia	Tyrosine kinase inhibitors Inatinb Dasatinb Ibutinb Ataccept Putrie analogues Fludrabine Azathioprine	Anti-CD52 Anti-CD52 Alemtuzumab
Potel SV	Myelodysplastic syndrome Waldenstrom macroglobulinemia		Daratumumab Isatuximab Anti-BAFF
Front Immunol 2019; 10:33. doi: 10.3389/fimmu.2019.000	Amyloid solid tumours and their treatment	Antrepileptic medication Phenytoin Carbamazepine Sodium valproate	

